“AD7047 96

DDC
e R
ﬁ? APR 28 1970 H
Ulbwu”éUU'Lb
Massachuseotts

COMPUTER ASSOCIATES

division of

APPLIED DATA RESEARCH, INC.

R.pé LEA b'v ‘e
RINGHOUSE
Fod._nl ific & Technical
Information Springfield Va. 22151

"This document has been - *~voved
ﬁapubucnlomoandodoclh
distribution s unlimited.

BEST
AVAILABLE COPY

A DIViIsSION OF =~ ATA et o e T o K
B ‘.)L‘..“' Lolll‘ \:'Jhcl‘iv‘l' COﬂ

[“} .M/&SS/\C(’!U“» TIS COMPUTER AS SOCMTE#
2 NC.

-——-—’*—

LAKESIOE OFFICE PARK WAKE! LD, MASSACHUSETTS 01880 (617) 245%‘0

THIRD SEMI-ANNUAIL TCCHNICAL REPORT

Part Il (Govering Task Arca 11)
(22 June 1969 - 21 Dccember 1969)

FOR THE PROJECT
"RESEARCH IN MACIHINC-INDEPENDLNT SOI‘TWARE PROGRAMMING"

Principal Irvestigators:
Task Area [Carlos Christensen (617) 245-8540
Task Area I Anatol W. Holt (212) 244-5700

Project Manages;

Peter C. Waal (617) 245-9540

ARPA Order Number - ARPA 1228
Program Code Number - 8D30

Contractor: Massachusetts Computer Associates Division of ADR
Contract No. DAHCO04-68~C-0043
Effective Date: 21 June 1968

Expiration Date: 30 September 1970

Sponsored by
Advanced Research Projects Agency
ARPA Order Number - ARPA 1228

Monitored by
Army Rescarch Office = Durham ARO-D

CA-7004-1711
April 17, 1970

EVENTS AND CONDITIONS
An Approach to the Description
and

Analysis of Dynamic Systems

by

Anatol W. Holt
Frederic Commoner
This research was supported by the Advanced Research Projects

Agency of the Department of Defense and was monitored by
U.S. Army Research Office - Durham, Box CM, Duke Station,

Durham, North Carolina: =, 27706,. under.Contract DAHC04-68~C-0043..... ..

TABLE OF CONTENTS

Chapter _ Page
I . INTRODUCTION e o . . o ‘e [] . . o o . . 1
"]
II. SYSTEM DESCRIPTION . . ¢ « ¢ o o o o o 7

III. MODELLING PRODUCTION FACILITIES . . . 35
IvV. PREVIEW OF MARKED GRAPHS . « « ¢« ¢« o 60
V. MARKED GRAPHS MATHEMATICS . « .+ « o o 72
VI. STATE MACHINES AND INFORMATION 151

BIBLIOGRAPHY OF RELATED WORK , « . . 188

CHAPTER I. INTRODUCTION

1.
INTRODUCTION

This repnrt covers work on Tasg Area II of the
ARPA sponsored project "Research in Machine-Independent
Software Programming® covering the six-month period
ending on December 21, 1969. Althowgh technically, this
report is the sequel to "The Final Report for the
Information System Theory Project"!, it is self-contained.

This report includes the work of Dr. Anatol W. Holt
and Mr. F. Commoner. Dvuring the period noted above,
consultations were held with Mr. Robert M. Shapiro,
Dr. Carl Adam Petri and Dr. Shimon Even.

This introduction is divided into three parts. Pirst,
a summary of the 6Qjecgives of the project as a whole;
second a reported contract period; third, a view of

things to come.

lsee bibliography for this and other directly related
work. :

’-

4

|

§omad

| et |

A. Summary of Objectives

There has, in the last years, been an ever widening

practical and academic interest in system problems which

become prominent when the system consists of many con-

currently operating components -- hardware or software --

and the system environment consists of many concurrent

users. The questions which arise are usually very difficult

to state exactly enough so that one could speak of definitive

answers, let alone actually find such answers.Here is a

sample list, to give the flavor.

Al.

A2,

A3.

A4.

Does the system perform the functions which are
expected of it?

Might the system "die" -- i.e. be brought into
a state of deadly embrace?

Can the system be extended or contracted by the
addition or removal of system resources?

Where are the system bottlenecks and what improve-

. ments in performance might be expected as a

As.

result of adding resources at bottleneck points?

Suppose we wish to replace one system component

!

‘by another one. Exactly what are the requirements

which the new component must satisfy in order to

insure "proper functioning" of the whole?

The aim of our project is to build a theoretical

foundation which‘wiil"hake“it'prhétiéallyfpdsgibie'tb agk’ ‘"

questions such as these éxactix, and £find definitive

KR

-
- i =
e e — 8 T

P P e G et i

answers to thesa.

We are entirely concerned with systems whose part-
by-part performance can be thought of in discrete terms.
Not pipe systems through which fluids flow, but algorithms
or circuits which perform digital functions, or manufacturing
units whose inputs and outputs are discrete lumps.

We are entirely unconcerned with such distinctions
as hardware/software or computer/automobile factory,
because the questions which we wish to ask and answer
apply equally on either side of such boundaries.

There are many existing methods for the description
and analysis of discrete systems. To give perspective to
our work it is helpful to contrast its methods and intent
with other techniques.

To begin with there are system simulation languages
(l1ike GPSS or SIMSCRIPT). In contrast to these, our style
is mathematical. Our descriptive primitives are very few
in number and the interesting properties of described
systems are to be found by algorithms based on theorems,
not by simulation. As already mentioned above, we expect .
the ability to formulate interesting questions in a way
which admits of exact answers, not answers by statistics.

In contrast to automata theory, we are fundamentally

interested in concurrent operation. This makes it im-

possible'to build one's models on..the notion system staté.. B S

While I am typing at an input terminal, a processor is

compiling a program and a channel is transajtting pages

from a disc to a buffer arca. The notion total system

state is a road block to the fruitful description of this
set of circumstances. Also in contrast to automata theory
ir the content of our theorems. We are not concerned with
questions like, what class of functions are computable
by what c.ass of devices, but rather with questions like,
how far out-of-step can this part get relative to that peort?
Perhaps we are closest in spirit to operations research
techniques, but with an insistence on conceptual economy
and rigor more common in purer branches of mathematics.
As0, it is necessary that our descriptions be built up
part by part in anaiogy to the way in which the systems
being described are built up part by part. This is in
contrast to many descriptions in the form of sets of
equations or ihequalities. Each equation or inequality
usually expresses some constraint on the whole and does not
correspond to a functional component. In this respect, our
descriptions will resemble programming languages which allow

assembly of parts.

B. Accomplishments of the Contract Period

The basis upon which the work began was the "Final
1 Report for the Information System Theory Project". It
became clear that'aNQirect‘éppréach-to.the‘analysis,ot :

occurrence systems was too difficult and we backed off

to the study of two singler clesses of structures --

marked graphs and state l{ggltlloqﬁglgggssg) Joth of
these are gpecial cases of occurrence systems. We-heove-
C 4

reacen to hor; lhnivour developing ab%ility to analyse

these two classes will give :; the tools with vhich to
attack the analysis of systems vhich are Petri-net
describable. Marked graphs and state trancition diagrams
isolate two aspects of system description from one andother:
the aspect vhich han to do with flov, and the aspect wvhich
has to do with function. The analysis of flowv (marked
graphs) snhows wvhere items flov and vhat other items they
meet; the analysis of function shows the structure of the
items and hov they affect one another.

In the area of marked graphs effort vas divided into
twvo parts: semantics and mathematics. MNere °“Semantics®
means developing techniques for expressing meanings
about systems {(n marked graph form (Chapters Il and 111
of this report). Or the side of mathematics many theorems
and algorithms were developed vhich have significant system
interpretation (Chapters IV and V).

~In the area of state transition analyzis we developed

a new technical concept of 1nto§!§;jdnlvhich makes it

possible to measure information quantities that flow in

and out of a state machine, as well as identify the infor-

mation content which flows in and out at different state - - -°.. «. .°

transitions, (Chapter VI). This work is, thus far, of
N

In regard to marked graphs, we are approaching the
point where it will be useful and necessary to build a
program package for the construction and analysis of such
graphs. Without such a package we will not learn how to
build marked graph representations of practical systems.

An analogy can be made to computer programming. Marksad
graphs (and more generally, Petri nets) are to system
description as computer code is to programming. In order
to represent large problems, one first nceds assembly
techniquc 5, and subsequently higher-level languages.
Efforts to mechanize such assembly of big descriptions are
worth making since there now exist analytic tools which will
reveal interesting properties of the resulting descriptions.

S8everal next steps are indicated in moving toward the
analysis of ictri nets. One direction is the direct
extension of present marked graph results. Another direction
is to form the appropriate connections between our existing
work on state transition diagrams and marked graphs. Both

of these directions will be pursued in the next period.

e . L O T I IR ——

CHAPTER II. SYSTEM DESCRIPTION

SYSTEM DESCRIPTION

Of what does a system consist? For example, should

we take processors, inputs and outputs as the elementary

entities of which they are made? Do thay have states?
Do they take space (or is it only their realizations
which do)? When they operate, do they take time? Etc.,
etc. |

.We shall introduce a set of elementary entities and
elementary notations with which to structure, describe,
and analyze systems. Formally, these entities would be
presented in a set of axioms -- just as witﬁ points and
lines in geometry -- here, only by an\informél description.

Our starting points are the notions condition, event,

ana their instances. An instance of an event is called

an occurrence of that event. An instance of a condition

is called a holding of that condition. Out of them we
hope to build the concepts with which a wide class of systems
can be usefully describeq, categorized, and analyzed.
The notions condition and event have, on the face of
it, several appealing properties. They have as wide A
range of interpretation -- from micro levels to macro
levels -- as do more standard concepts used as starting

points in system description (like value, functions, .

storage, etc.) Also, conditions and events are by nature
dynamic, tempogal; They.dgn‘t have.pq be'jpeppeq up", as

functions and values must be, in order to exhibit motion.

Of course, if our project is to succeed we must
(a) demonstrate that all of the usual notions (including
functions and values) cén be reconstructed and (b) that

the effort is repaid by new insight and analytic power.

A. A First Example

We begin with a simple example of structured conditions

and events.

12
11 1

Alo 9' 3

In this picture, each directed interval F——~C41
i i+

represents a condition which we can express in English:

it is i o'clock. Each dividing mark —B+—— (or vertex)
i

represents an event (i o'clock). The picture also
establishes two relations between conditions and events:
a
x Y

All holdiﬁgs of condition a begin with occurrences of

event x , and all holdings of condition ' a end with

occurrences of event .Y .. ., il L e e it

In example Al we sce a small circle called a token

on the 8 o'clock interval. This is. a method of exhibiting

a particular holding of the condition it is 8 o'clock.

By moving the token across an event symbol we can exhibit

the effect of the event.

A2. The effect of the event 9 o'clock.

‘8 \\/
An occurrence of the event 9 o'clock ends a holding of

the condition it is 8 o'clock and begins a holding of the

condition it is 9 o'clock.

B. Occurrences and Holdings

Figure Bl shows the relationslip between the events

and conditions pictured on the clock circle, and their

5}&

12
1l

occurrences and holdings.

Bl.

10
A, 8

5 6 7 8 9 10 11 12 1 2 3

bt | —— P > —>) -
1l 2 3 4

.

‘. ’
Tooa !

Each vértex on the line which extends iﬁdeffniféiQ.in

 s—

directions represents an occurrence and each directed

both - .

4

e e R B = e e F e

5

Yy —

10.

segment repre. . nts a holding. The labelling on the line

shows what occurrences belong to what events and, by
implication, what holdings to what conditions on the
"clock". As we see, ecach clock event is an infinite
class of occurrences and each of its conditions is an
infinite class of holdings.

We can think of the occurrences and holdings in A3

as generated by the clock circle: by rolling it forwards

and/or backwards. This motion is also rcepresentable by
moving the token around the circle.

We will take two relations between holdings and
occurrences as fundamental: occurrence x begins

holding h and occurrence y ends holding h .

X h . D.y
The beginning of h The ending of h

We will allow holdings without beginnings or without

endings, or both, represented thus:

If a holding h has a beginning we denote it by ;h

If a holding h has an ending we denote it by h

For an occurrence X , Wwe use +x to denote the set of

[E

holdings h , such that h* =1§ ; we use x° to deﬂéte.

e

11.

the set of holdings h such that x = *h . We will
also apply the dot notation to sets of holdings or sets
of occurrences, to mecan all clements obtained by
applying the dot to the elements of the sets.

Consider an arbitrary collection of holdings and

occurrences. We can represent the collection as a directed

graph with the unusual understanding that there are arcs
which lack a head vertex or a tail vertex or both. Now
relative to a given collection S of holdings and

occurrences we define:

B2. ‘For S1¢S, € S . 8 is before sp (52 after

s;) if there is a directed path £rom Sy
to s, . If s; is before s; or s, is
before 53 then we say that s; and Sy

are ordered. 1If S and s, are not

ordered then they are concurrent.

Finally we assume as an axiom:

B3. For 83,5, € s , if 8y is before Sy then

8, is not before Sy - In other words S

as a graph contains no circuits.

C. Concurrent Holdings

An important aspect of describing complex systems is
the ability to represent states of affairs defined by the

concurrent holding of many conditions. We will now show

by example how this is done; = = " 7t ~~'»; Ve Teeer s

Let us picture a clock with'more~structure than Al.

[4

Think of the clock face as divided into 12 sectors. There
is also a pointer which advances from sector to sector.
The behavior of each sector is now characterized in terms

of two conditions: the pointer is in the sector, the

pointer is not in the sector. The behavior of the pointer

is characterizcd by 12 conditions of the form: the pointer

is in sector 1i .
. >}2
1 - l Tall

10!4"\ "OQO»/)2

Cl.

In Cl we see a set of 12 concurrent holdings (12 tokens

on arcs). Each occurrence is now the ending for two
holdings and the beginning for two holdings. Correspondingly,
the effect of an occurrence can be pictured by transporting

two tokens across an event symbol in the diagram.

c2.

13.

There are two other useful pictures of occurrences to

consider.

First, we can think of an occurrence as expressing a

difference betwecen sets of holdings.

I'd ”-("

2 ‘5
C3. A < g

I N/
o 3
\-, .y

Ny L,

~N s

The dash set
The dot set and
The difference

.2 :gngié?;)

The occurrence
which transforms
the dot set into
the dash set.

Contracting the line ————\\\ in C3.2 to a point and

labelling the arcs so as to picture the occurrence in

C2, we get:

./// s8-
////),5\\\\; S9+
§9- S9+Y

§9-

Here is a larger picture

PR 4
[-t .

ey

the pointer is in sector 8
the pointer is not in sector 8

the pointer is in sector 9

the pointer is not in sector 9

of interconnected holdings

and cccurrences represented by Cl.

From C5 we sec at a glance that the occurrences relate to

one another just as they did in Bl -- namely, there is an
endless sequence of them which repeafs a cycle of events.
Since we are about to consider pictures in which
occurrences as well as holdings may be concurrent, it is
now appropriate to express exactly what we mean by ordered
holdings and occurrences with reference to pictures like

Cs.

D T I IR S T L

C6. . Two holdings or occurrences are ordered if they

[15.

are connected by a directed path. They are

then ordered in the sense of the path.

D. Concurrent Occurrences

Another inportant aspect of system description is
the ability to express, formally, meanings such as: x
happens while y happens -~ in other words, that an
occurrence of x and an occurrence of y are not
ordered with respect to one another.

We get an example of unordered occurrences with a
v;fiation on Cl. Imagine a clock face with two pointers,

both rotating in the same directicn but never passing one

another. Assume further that, aqide from their position

_relative to the clock face, the two pointers are not

distinguishablé one from the other. These assumptions

give rise to the following variation on Cl.

events which can occur -- 9 o'clock and 4 o'clock and
they are not ordered with respect to one another --
i.e. concurrent. In the style of C3 wo can picture the

situation thus.

,»"’ -',:‘ u'l‘
o :\\(fﬁ H
/"’ '/ clock \ e
// l ’ TN
?fgﬁi \ 40 N ~£;
v’ '\ ' J
c,f?,.' | \IOCR . ! .'.'i
%?“." “& o ‘\\\. - uo .é,g
‘ ! o \.rI/
A %‘1?’ -] 05 B
L %. _— ..\\,8
// T~

If we think of an occurrence as a set change =-- knock

off one "bump” and add another -- it is a change which is

applicable to many different sets: namely any which has

the bump which is to be knocked off and does not have the
bump which is to be added. Thus we can think of the
occurrence of the event 9 o'clock pictured in D2 as applied
to set A, or as applied to set A already changed by the
occurrence of 4 o'clock -- or, indeed, to this latter sot
modified yet further by an occurrence of the event 3 o'clock
which is after the occurrence of 4 o'clock, Ané many others.
It is tempting to think of a maximal set of concurrent
holdings which we call a time ‘lic;, or sinplx gliégi as-an ¢ - vos v ot

instance of a total system state. We now sce that when

concurrent occurrences are possible, this picture of a

17.

slice (s serioualy misleading. A total systes state
alvays stands botween some last occurrence which brought
it into existence and Defore same moxt occurten.e which
replaces it by a mew One. But a slice nay etand after
Many occurrences, any one of which could have becn the
Jast set chaage to bring this elice (nto existence.
Similarly it can stand before many occurreaces, each of
whirh can be independontly applied to chanye it.

Sinilariy, vhen there are tota] systen states each
occurrence (e flanked by & definite “Defore/after® pair
of states. Put vilh CORCUIToncy, & Glven ocTurrence nay
be thought of applying to many different elices, as
Sepcribod mxive.

Although there is mote 1o gay aboul the semantics
of concuriency, ve nov vish Lo eRanine some Other sspocCts
of Cl1 and DI1.

. Parte

311 our claime of Gescriptive pover ate to be made
Q9ood, we must show how, Being conditions and ovents, one
can eometruct the formal counterpart of objects vhich

underge change through the operation of o systen. Examples
Cl and Dl furaish uws with some material to show how this
vorts.

Bach of these jittle ‘mi-o‘cuhwuu
elemontary parts vhich look 1ike this:

| a pointer

O

In both Cl and Dl there are 12 interconnected sectors
and, in Cl, one pointar and in D1 two of thea. BEach of
the parts have the following notable charactaristics:
(a) the condition and the events are buth unboundedly
repeatable == {.e. consist of infinite classes of .
instances; (b) every slice contains exactly one holding
for each part.

We could also asssemble the smallest parts as showr
in Bl into larger assemblies. PFor esample:

N PP P Py

A string of three sectors

Such a larger part ia represented by seversl holdings in
each slice, but atill, :
In Dl there are two pointers. They are ®identical®,
but have the property that at any time one can distinguish
them by their sector position. In any given sector, the

19.

two pointers appear in alternation. We would now like to
show two variations on Dl. 1In the first, the two pointers
are less distinguishable than in Dl; in the second, more
distinguishable.

The pointers become less distinguished if we assume
that they can overtake one another. That requires that

two pointers be able to occupy the same sector concurrently.

T™o tokens on an arc mean that there are two con-

current holdings of the same condition; e.g. in E3 itf}{}—.l

means a pair of concurrent holdings of the condition

sector 4 is emoty. Thus the sectors may be filled,

twice concurrently, and may be 'fill, twice toncurrently --

i.e2. occupied by two pointers.

20.

We could look at E3 either as consisting of 12
sectors, each of capacity 2, or of 24 sectors grouped
into 12 groups of 2 indistinguishable ones. Also, the
slice exhibited in E3 can now be transformed by occurrences
into a slice in which both tokens on the outer ring occuby
the same arc. By interprectation, this is a slice in which,
in respect to propertics modelled in E3, the two pointers
are wholly indistinguishable.

As proposed above, we shall now modify D1 so as to
make the two pointers more distinguishable, this time

prescrving the property of D1 which prevents the pointers

from passing one another.

21.

line segments and the conditions are represented by arcs,

as before. The basic parts of E4 are the following:

ES.
\\¥ vertices named by

.1l Pointer 1 unprimed numbexs

vertices named by
.2 Pointer 2 g. primed numbers
;F |

f1 pointer 1 is in
sector i
r2 sector empty, ready
— B for pointer 2
O £2 pointer 2 is in
£2 sector 1
rl sector empty, ready
for pointer 1

«3 Sector i

F. Events in Conflict

Thus far, we have said nothing about choicte among
alternative events, but the ability to express this is

also fundamental. Choices among alternative events may

have many meanings: whether the next input is a zero or

a one, whether a given server will next serve a particular -

one among a set of waiting users; whether a delay will

- ———— o ————— e

22,

occur or not; etc. etc. Once again we will indicate by
a simple example, how such choices are ekpressed.

Assume that we have a sequence of "cells" each with
three states, embt§, zé¥6 and géé. If the cell is in

state zero or in state one we can say that it contains a

value. If a cell has a value it will pass it to its next
neighbor.

To represent this we must replace the arrow symbol
which was used above for conditions by another symbol. It
was true for all conditions we previously depicted that all
of their holdings began with occurrences of the same event,
and ended with occurrences of the same event, depicted by
the drawing:
| event 1 EEHEIEI3;*>Lvent 2

, a
In our new example we will expect some holdings of cell i
is empty to be repladed by cell i contains a zero (i0 for

/

short) and others by cell i contains a one (il). Similarly,

cell i is empty (ie) will sometimes replace cell i

contains a zero and sometimes cell 1 contains a one. We !

can picture these relations thus:

i0

S “’“’__"’l‘q

xr0

F1.

represents a
condition

't] ‘represents an " |
event)

23.

The black dot in Fl is a token which represents a holding
of 10 . We could now use Fl to gencrate pictures of
holdings and occurrences in the same way as in Bl, keeping
in mind that any given holding of ie can only énd with
exactly one occurrence, hence an occurrence of r0 or

of rl exclusively, and begins with exactly one occurrence,

hence an occurrence of t0 or +tl1 exclusively.

on

e eose & o> 23 {o o {i»e e [D= {>» C>e [5ae s s s 0o

io ie i1 ie io ie io ie il

About the events in Fl we can say: r0 and rl are

in forwards conflict because, in slices in which ie holds,

a holding of ie may end with an occurrence of the one

or of the other, exclusively; t0 and tl ' ‘are in backwards

conflict because, in slices in which ie holds, holding of

ie may begin with an occurrence of t0 or tl exclusively.

Now we can show a construction of a sequence of such

L U ———.

F4 shows some holdings and occurrences related to F3 where
the occurrences ending successive holdings of le were
chosen arbitrarily. The dark arcs represent the slice

which is shown in F3.

\V\KR 10 leA'LO 1e d\11 1e
\:m ize \zo 2e \20 2 V

1 4\91 3e 0 3 / 0 3e 1l 3e
/1 4? 4e \E/ 44 \40 .4 d/
ANVAVAVAVAV

v/

G. Axioms of Equivalence

Systems, according to our view, are collections of
holdings and occurrences, related to one another by begin
and end and grouped into condition classes and event classes.
In the discussion so far we have shown two kinds of pictures,
both in the form of graphs: pictures of holdings and
occurrences, and pictures of systematically related conditions
and events. Theee latter pictures included so-called tokens
to show concurrent sets of condltlon holdlngs.“

We are now concerned with establishlng principles for

the grouping of holdings into condition classes and occurrences

Lol l""

s—

—

25.

into event classes. Of interest to us vwill be groupings
which are partitions. Such partitions can be thought of

as equivalence relations.

' Gl. .1 h, = h h, - is condition equivalent

conditions c¢ , hl e ¢ iff

h2 € C

.2 Xz oY ' x ‘i“eVeht'equivalent to Y .

meaning for all events e ,

. Xege 1iff ye e

Now a crucial question arises for the description
of systems. What are-the rules which govern translating
one's knowledge of condition holdiﬂg into one's knowledge
of event occurrence, and vice versa? More formally ex-
pressed, hoy shall the notions same condition (h, = _ h,)

ey)?

relate to the notion same event (x

There are various sensible criteria one could introduce
with various consequences for the class of system descriptions
obtained. We will mention screral criteria of interest to us.
A thorough study of the subject introduced by such criteria
is, however, beyond the scope of this presentation.

The first criterion, which we will assume as given for

sl ate e

all system descriptions discussed in this report is-

G2. Any two occurrences of the same event end holdipgs

of the same sct of conditions (if any) and begin
holdings of the same set of condltlons. |

We can express G2 more formally as follows. Call two sets

of holdings condition equivalent if there is a 1l-1

correspondence between the two sets with all matched pairs

being condition equivalent. Then,

G2'., x = e Y =P "X =

n
0
L<.

and x =

i
¢]
-
i
v
L]
m
[

Cc

A further set of criteria of which we will make. occasional

use, singly or in combination, are the following:

G3. .1 h, = c'h2 =p ‘h1 = . 'h2
-2 h; = hy= ‘hlse‘h2
.3 hlschznbhi seh°
.4 hlsch2'<1= hi seh'

Now suppose we use the two symbols for conditions and

events introduced in Fl:

conditions: (:)

events: |

..

i 27.

and interpret the relation

(:) c+ as: any occurrence of e ends
. one holding of ¢ ,
c e
and the relation
C:) I as: any occurrence of e begins
one holding of c . .
e e

Then we can translate the criteria expressed in G3 into

pictures.
3.1 lud \\\\“z)
G3. excludes -
/ .
G3.2 excludes -——**’(:)
| 0

G3.3 excludes C)::
G3.4 excludes (:)”’47

G4. .1 Example Al satisfies all four criteria, and is

-
-—

the only example shown which does this.
«2 All subsequent examples up to (but not including
Fl) satisfy G3.1 and G3.3 but not G3.2 and G3.4.

[] .4 PF3 satisfies none of the four criteria;

:3 Fl satisfies G3.2 and G3.4, but ‘not G3.1 and G3.3, " -

It would be interesting to study various existing
formalized methods of describing events and conditions in
regard to their "axioms of equivalence". Mere we would
only like to point out that everything described by a

state transition diagram conforms to G2, and G3.2 and G3.4

if one interprets the statcs as conditions and the transitions
as events. Descriptions which satisf{y G2, G3.1 and G3.3

are what we call marked graphs. Descriptions which satisfy

G2 only, we have called Petri nets. Thus we see that

marked graphs and state transition diagrams are examples

of Petri nets subject to particular (and, in a certain

sense, dual) restrictions. .
Crudely, one could express the difference between

these two specializations thus: marked graphs allow

concurrency, but no conflict; state transition diagrams

allow conflict but no concurrency. Petri nets allow both.

H. Petri Nets

In the preceding section, a notation was introduced
for representing the conditions and events associated with
a set of holdings and occurrences which satiafies axiom G2.

Such a representation is called a Petri Net.

Hl. 1In a Petri net, conditions are represented by circles:

(:) called places and cvents are represented by bars:

o .o o .

called transitions. Arrows between these symbols have the

follovwing mcanings:

O——~- moans: Every occurrence of eveat e
ends one holding of condition ¢ .
c

moans: Every occurrence of event o
begins one holding of ¢ .

We will sometimes use arrows to reprwsent places or

transitions which, {f indicated explicitly,would only have
one incomj g arrovw and one outgoing arrow. Thus:

o O
O—=0 == O —4—0

Pinally, we will use a dot -+ ({interchangeably with the
transition sysbol: .

Q

I ASETAN

B2. If, in a Petri net, we wish to represent a holding of
a condition c , we place a token on the corresponding
place. The function which specifies the number of tokens

on each place in a Pefri net is called unnrkig ; of the net.

 —

Examplet

Mo holdings of ¢ 1 O'
One holding of ¢ @v
swo holdings of ¢ @p

1f every condition wvhich is regu' -« for a certain
event holds, an occurrence of that event takes place. This
occurrence onds a certain set of holdings and bugins a
certain set of holdings. In a Petri net we represent an

occurrence of event e by firing the trancition t which

oo

This is accomplished by removing one token from the

represents o

places which have arrows pointing to ¢t and then adding
one token to the places to which t points:

3 e

PN N

rl 31.

H3. We are particularly intcrested in Petri nets which

satisfy certain constraints mentioned in section G:

G3.1 excludes

G3.2 excludes

'
o
= K

G3.4 excludes

A Petri net which satisfies G3.1 and G3.3 is called a
marked graph. A Petri net which satisfies G3.2 and G3.4
is called a state machine graph.

| Using the conventions in H1, every place in a marked
graph may be represented as an arrow; every transition in a
[I state machine graph may be represented as an arrow.

These special types of Petri nets are illustrated in the

table below:

S, e L

Is it a marked graph?

Yes ' No
/Ov>€
4
Y
e
NEReW
O
Is it a I . -
state
machine
graph?
N
o

The firing rule is applicable to all four of these Petri
nets. Here are the markings after firing the transitions

marked x :

33.

L
v

T SR ——
R

. - apa— -
R

|
i
{
{
|
l

H4. Marking Classes

If M is a marking of a Petri net and o 4is a non-
empty sequence of firings which is possible starting at M ,

we say M[o) exists. If the result of this sequence is

a -urkiné M, we §5y H]o) - N ‘ér simply write M[odM' .

| Co

i s =

34.

If there exists a ¢ such that M{o)M' wve say M leads
-+
to M' , written M[->M' . M is the set of markings M'

P

such that M[->)M' ; M is the set of markings M' such
_ s .
that M'[->M . M is MU M and is called the marking

class of M .

H4.1. A marking M of a net is said to be live if
M' ¢ {M} U M implies that for any transition t ,
there exists an M" € ﬁ' such that t is firable

in M" .

H4.2. A marking M is said to be safe if M' ¢ (M) U M
impliqs that M' places at most one token on any
place.

All the examples in section H3 are both live and safe.

If a marked graph or state machine graph is strongly
connected*, it has a live safe marking. A strongly
connected state machine has only one live and safe marking
class; any marking which places only one token on the net
is a member of this class.

A marked graph may have several marking classes. A
procedurc is given in Chapter V, Section F, page 111
for finding a live safe marking for a strongly connected

graph.

. O

*strongly connected means: There exists a directed
path from any vertex to any vertex.

CHAPTER III.

MODELLING PRODUCTION FACILITIES

e —— e e - e

35.

MODELLING PRODUCTION FACILITIES

In this chapter, we will show how to use Petri nets

for building models of production facilities. We will

place particular emphasis on whatever can be modelled by
marked graphs because we can analyze marked grarhs for
their interesting properties. We cannot do this yet for
wider classcs of nets. What is described in this
chapter is only one way,among many,to build Petri nets
with an interpretation.

A production schema is a description of a production

facility which repeatedly converts certain inputs to certain
outputs. Although it is redundant to say "repeated use of

a facility" (since facilities are established for repeated
use), the emphasis is important. Petri nets in general

and marked graphs in particular are primarily concerned

with interreclated cycles of activity, rather than finite

sequences with beginnings and endings. (While in many
schemes of analysis, cycles are treated by cutting them
open, our techniques often make it desirable to close open
stretches so as to form cycles.)

An example of a facility might be an automobile factory.
Here the primary inputs are concrete objects and materials
such as rolls of plastic, sheets of —etal, cans of paint,
boxes ofrrivcts(etc.; tpc primary outputs are also con-

crete objects such as sportscars, sedans, panel trucks, etc.

36.

A sccond example of a production facility is an
assemblage of computing equipment coordinated by some
combination of plug boards and/or programs to accomplish
ipvcntory control. Herc the inputs are more abstract,
namely symbolic expressions representing arrivals and
departures of inventoried items,while the outputs are
again symbolic expressions representing reports on the
status of the stock.

Although both of the above examples are relatively
®*large” systems -- many parts and many sub-processes --
that is not a nccessary fcature of what could be usefully
trecated; the task could be to describe and analyze a
facility which computes c(a+b) from the inputs a,b,
and c .

Most of the operations in the above examples can be
thought of as operations of assembly -- i.e., the putting
together of parts to make a single whole. Thus in computing
c(atb) , a and b arc "assembled” to produce a + b
which, together with ¢ , is assembled to produce the
result. We are however, also interested in productions

which are, in part or in whole, disassembly: for example,

unpacking a crate which contains many packages (of packages).
In computing, a disassembly could be the unpacking in

memory of a complex record brought in from secondary storage.

Or, it might mean the multiple copying of a single value for

concurrent usc by sevvral proccsses.

',

Bl s o S
¥

A. The Components of Description

To construct our models, we let the events be pro-=
duction events, and the conditions be the states of readiness

of various matcrials for participation in production events.

Examples:
v w 7
¢ a cup is now ready for
: o ////’ X to occur
Al. F 3 a saucer is now ready
$ x for x to occur
x assembly of a cup and
c.s saucer
c.8 a cup and saucer are now
ready for y to occur.

A2. Comme.iuiit

— . - en -e o o

.1 Within a given cycle of manufacture there might be
several distinct "times®" and/or distinct "places”
at which a cup and saucer are assembled. All of these
would appear as scparate events in the model.

+2 There are many possible interpretations for the
event w (which produces the ready saucer). It
might be an event which transports the saucer to
a designated physical place where the assembly can
take place; it might be an event which results in
saucers being dry so that they can be assembled.

«3 Suppose there were two tokens on the arc representing
the saucer condition. It would moan ‘two saucers :

ready to participate in x . In a given production

38.

schema this possibility may have been part of the
intention, but in another, it may represent an
unintentional error. lNere are two reasons why it
might be an erro:.

For two saucers to be rcady would probably
have to mean a saucer storage with a capacity for
two-or-more saucers connected to the active agent
whicin assembles cups and saucers. The concurrent
appeerance of two ready saucers would certainly
be an error if the actual saucer capacity at that
point in the system is one.

A second difficulty might arise from the fact
that two tokens on that arc represent two ready
saucers not distinguishable from one another with
respect to the event x . Now if it is essential
to proper production that the saucers and the cups
flow through the system in strict sequence ard,
at the asseably point, become paired, nth saucer
to nth cup, then two tokens on the arc must be
an error. If two saucers are nov ready there is no
guarantee vhich one will be assembled with the
next cup. This latter kind of reason is often of
importance in models of algorithmas where the cups
and saucers are values being assembled by aritheetic
operations. In that context it is common that the

several values to be combined by the algoritha come

TRATERET

in related "waves® and it is an error when there
is no guarantce that the next value of s ID.tl'
the next value of ¢ . As was already mentioned
in the last chapter, graphs in which no condition
symbol ever holds more than one token, are called
safe.

A vertex with several input arcs and only one output arc

represents a pure assembly operation. A vertex with

several outputs but only one input represents a pure

disassembly operation. There will also be vertices which

have multiple inputs and multiple outputs.
Considor, for example, the following parenthesis

(()(0 0))

It might represent an arithmetic expression to be evaluated

structure:

by a partial ordering of assembly steps:

Y

or a nested set of boxes to be unpacked (arithmetic
expression to be porocd?)'bj a partial ordering of dis-
assembly operations:

40.

AL,

/\
/ \

Nere is an example of an evont with scveral inputs and

several outputs.

AS. \\/. tvo natural numbers with
NN

canpute Matural aumbors

/\ r and e <0 that
meg°neyr, TR
8. Yarious Fiows

¥e will shov hov to build wp & production schema in
toughly Uhree steps!

«1 Primary Fiow

«2 BRack TFiov

«3 Internal Circuits

Primatry Flovw pictures the tav matcriale transformed
throuoh however many intermediate stajes are necessary into
the actsal ocutputl packeta. MRack Flov pictures the flov of
orders and petrmissions which control primary flow. jnte asl
Cirouits depict the circulation of internally moveadle |

(re-allocatadble) faclilities.

C. Primary Viow

Using marked graphs only, primary flow structure will

bo a partial ordering. MNere (s a typical example. :

Cl.
.1 A facility for computing two outputs, A and B ,
from two inputs, a and y , defined as follows:

C c*

O Py Ot e ooy

nx ¢ wy nx - Wy

A » ——e— e ———
¢ v

= o ay e uy
v D

.2 Primary Vlow:

level 0

level 2

level)

level ¢

level 3

‘2.

let us gec vhet Lappens {f we take Cl.2 as a finished
production schema for Cl.)l. This means studying the
propertics of C1.2 as a marked graph. by applying the
firing rule to Cl.2 as a marked graph, onc can advance

to “later” markings by firing the O0-lcvel vertices
arbitrarily many timecs concurreantly (or, one could move
backvards to “carlier’® markings by (iring the level $
vertices backvards, arbitrarily many timos concurrently).
Thus, wing the firing rule unrvetrainedly, one cnuld
*flood® Cl.2. Once there are lots of tokens on the graph,
one can fire any number of vertices of the graph any
nunbeor of tises concurroatly. Nere ja a partial ordering
graph amaller than Cl.2 vith vihich ve can illustrate these

poss bilities of martings and firinge,

-

my o

"f' 'o
10 tires
"f. 30
$ times
fire),
4 timoa
fise &,
1 timw
fire 5,
) times
fire ¢,
2 tinmoa

(%ote:

.‘

fire },
) tince

fire 2,
¢ % timoe

AR e

- -

fire),
S times
fire),

47) tires

T ¥ tire 4,
4 timen

fire 2,
1 timoe

- -

T™his marked graph {s not safe.)

o

4.

1f Cl.2 is interpreted by the marked graph firing rule
it will behave in the way we just {llustrated, and that
will make {t a bad model for Cl.1 for several semantic
reasont.

Pirst, if one assumes that every holding requires the

use of some resource (e.g. a storage unit) and every

gogurrence involves the uae of eomo resource (e.g9. &

processor unit) then Cl.2 models a facility with unbounded
resources, contrary to natural assumptiona about facilities,
Secondly, if the comstruction of outputs from inputs (s
interproted as arithsetic evaluation, then oneo should
assume that succestive values of x's and y's are
different. In the operation of Cl.2 no order is Rept in the
proper associstions of successive x , y paire, nor can one
know which outputs relate to vhich iaputs. (Poth of these
difficulties were doscribed in goneral terms (n A..).)

Since pictures very similar if not identical to Cl1.2
are often used to represent information flov In a computation
such a9 Cl.]1 vithout say of the strange semantic consequonces
which follovw from interpreting Cl.2 as » marked grapgh, it
is interesting to dwell Liriefly on some of the differences
between more conventlional vievs of such diagrams and the
marted graph vipew.

Still wing the concepts of vertex (/rings and token
transport, we could “operate® the graph as foliowa:

.1 Begin by putting onc token on each of the two

arcs x and y between levels 0 and 1 .
.2 Piro other vertices in any order that is possible
(for example level by level).

.3 End when the tokens have arrived on the output :

arcs, A and B ,]

Mith the interprotation C). beginning and ending are special
procedures. Maving *oporated® the graph once, one can of
course, oporate it again by reinitializing. But the
sequonce constraint vhich prevents reinitializing until

the last overation is complote is only implied by the
‘operating rule® C), in contrast to the sequence constraints
expreased within the diagram. After the next follrvwing
discursion of back flovw, it will become clear how the inteat
of C) could be expresced by the marked graph firing rule.

D. Back Flow

Now can ono cottoct the defects of Cl.2 wnder marked
graph interpretation? As it turns out both problems --
sodelling finite facility resources and (nsuring proper

segronc .ag of itema through the facility -- can be solved

by the same mcain,

Linits can be placed on the need for concurrentl:
evailable facilities by taking amother clazs of inputs and
outputs into account, pamely those interpretable as orders

46.

and permianions. There are orders (permissions) for output

which travel from the environment to the facility, and are
therefore inputs to the facility. There are also orders

Apermigsions| for input which travel from the facility to

the eavironment and are therefore outputa from the facility.
Pinally, there are ordors (permissions) which are passed
intoernally from one production event x to another one Yy
£f y 48 responsible for some part of the input to x .

We shall next show a serics of pictures which serve to
explain hov the flowv of orders and pormissions -- back flow,
for short == help to model a production facility. These
pictures will be built on the figure:

.
which reprosents some arbitrary primary flov (in the case
of marked graphs, a partial ordering) vwith two primary
fnputs and one primary output.

o [mm—

;v I
Dl. e e :.
1 - i A} = An A-item is available
& ~ . '\\ B to the facility
1 i : A, - The facility has received
/ e ® PR 3 an A-item
- -~
.1 A 5, Il - An order for an A-items
is available to the
| environment
g . / 'Xz - The environment has
.}" received an order for
an A-ftom
N -
C
y B and sinilarly for B and C .
.-’Ez

Mow let us consider the case where the environment will not
subnit a nev order for output unless the last order has been
dolivored and the facility likewine will not submit new
ordors unleas the last order for input has been delivered.
¥We can represent thies by putting one token on each of the

three circuits in D1.1).

/ *f s

5

o

—— S E—
—— e -

48.

We must no« digress briefly to point out some funda-

mental facts about marked graphs

D2. In any marked graph, the nuaber of tokens on any

circuit can rever be changed by vertex firings.

This is because any circuit muat cnter any vertex in the
graph the samo nusmbor of times that it exites from ft. On
the other hand a vertex firing takes one tolen froam every
entering arc and puts ono token on every outgoing arc.
T™herefore in D1.2 there vill nover be nore than one token
on any of the ates M, M, or C, .

A circuit in o marked graph vhich has exactly one

to\en on it ias called a basic circuit. The three circuits

in D1.2 are basic circuits. 1If we regard the evenlts and
conditions on o circuit as the glemants of the circuit ve

nov Obsorve |

0J.
Any two diatinct alements on a basic clrocuit nuat
‘alternave®. For exawple, after a holding of »; ,
and befotre the nevt holding of By , there nust he o
holding of By . sssuning that B, and By are on
A basie circuit; and sinilarly for occurrencen of

events.

In D1.2 the enviroament never handles more than one order

for an A-item at a timm, and the facllity never handles

more than one A-item at a time. Notice also that the are
labelled A , vhich is part of primary flow for the facility
could be viewed as back-flow for the enviroament: the
dolivery of the next A-item can be interpreted as a per-
mission given to the facility to deliver the next order for
an A-{tom,

Consider next a modification of Dl.2. Let the eveat

which ylelds a B {input and the event vhich yields a new
order for outrut (T;) be coincident. 1In programsing,
this (s the case if each call on a subroutine (the facility)
is accompanied by a parameoter specification which is either
part-or-all of the input on which the routine must operate.
It is a'so tho case with ghoe repa'r shopa. The delivery
of the order for a repalir coincides with delivering the
shoes to be repaired.

Mow mote: Af we ignore the actual handling ot orders by
the facility, then the facility modelled by DE.1 §s the

The dotted arrow in DI.2 serves as a reminder that the
event x {8 guaranteed to ho before the event y because
primary flow is modelled as & partial order with y aend
8 &8 its only carlicst elements and v as its only latest
element

Now we can sco that the effect of the arc Cy3 with its
token on the model is to make every primary flow path from
X 0 y apart of a basic circuit. Therefore, by D), any
tvo elements on &y such path -- production evente of
Ou..itions == will have to alternate. By D2, no arc on
any such path will ever hold sore than one token. These and
only these effects on the model of the facility are also

achieved in D4.1.

1f wve now further modify D4.2 in accordance with the
now assumption that the events wvhich deliver the next order
for output, the next B (nput and the next A input all
coincido -~ in other worda, that the order for next output
is accompanied by all input items noedod to make that out-

and by a modification like the one that leada from D4.)

to D4.2 R
/ \2
\\\

kb i
.rllfl!mﬂlluﬂll-l-nmm~*—u-aﬂuﬂﬂmun-—- S —————

[

52.

|

In D4.4 back flow has becen represented by a single arc.
Following the model of D4.4, we could also introduce back

flow in Cl.2 as follows:

D5.

This completion would correspond to the following set of

sémantic assumptions about the operation of the facility.

D6. .1 That the events which deliver the next value of
X , the next value of y and the order for the
next computation all coincide (b) ;
.2 That the events of receipt by the environment of
the next A output value, the next B output
value, and permission to generate a new order all

coincide (e) :

) CORE L Teers

pérmission for an order (E) outstanding at any

i cocum LN g

one time.

j ==

.3 That there is never more than one oxdexr, or one

b

53.

Now notice that D5 with the marked graph firing rule

behaves exactly as Cl.2 would under the special rule C3.

Relative to rule C3, howzver, we have made substantial

formal and semantic gains. First., initialization and

termination have become event fivings no different from

any other in the schema; second, we have shown these rules

to follow from a special set of scmantic assumptions

(6.1 - .3) about the way in which the facility relates to

its environment. Other assumptions lead to other back

flows.

One can think of DS as illustrating a standard
paradigm for turning a prim:ry £lc. diagram into a live
and safe marked grapp”(see Chapter 11, H4.1l, .2 for
definition). The paradigm is:

/

7

D7. .1 1Identify all environment output collecting events
to become a single event;
.2 Identify all environment input delivery events
to become a single event;
.3 Add a back arc -- from collecting event to
delivery event -- with a token.
Tﬁat a live and safe marked graph is prodaced in this way is
proved in Chapter V.
In regard to the'production facility, liveness means
that the fac1l:ty is so des;gned that it can contlnue to

: operatn zndeflnltely Safety means that there are never

two concurrent holdings of the same condition or two

- " ..

; % :

willlﬂlnﬂlllllll-n--mm SN S e _ —
, Mn

54.

concurrent occurrcences of the same event.! This implies
for finite primary flow, that the facility can be operated
with a finite set of processor storage units.

There is another standard paradigm for adding back
flow to primary flow in order to produce a live and safe

marked graph, illustrated by the next figure.

N
<
/
_ /
) /
v

Y .

D8

—

-3

The rule is:
D9. To each primary flow arc, add a back arc with a token.

That this procedure produces live and safe marked graphs is
proved in Chapter V.

One can express D9 as a policy in the design of a

.. . lSafety also has somethlng to do -with-the concept of

] : functlonallty“ -- i.e. that successive outputs are functlons

| of successive inputs and of nothing else -- but thls topic is
beyond the scope of this presentation.

- f—

production facility, namely: at every point, give orders/
permissions for re-suppls at the earliest time possible;
This policy has the effect of maximizing concurrency in
the operation of the facility and minimizing throughput
rates. Other policies can be represented by yet other
proccducres for introducing back flow, but further dis-
cussion of this subject goes beyond the bounds of this
presentaticn. Theorems pertaining to the evaluvation of
the degree of concurrency and to throughput rates are
presented in Chapter V. Roughly, one can state: higher
orders of concurrency represent greater deménds on producticn

resources, but tend to increase rates of throughput.

E. Internal Circuits

In addition to representing the flow of materials and
orders through the facility one can also represent the
flow of internal resources which may be reassigned to
participate in various production events.

We may expand our picture of a single production evént
80 as to show how reassignable resources participate in it.

Example:

El. a ’//é
.1

PTG -
s
b

mmm ——

56.

| .2 (This is an expansion of Point 1l.)

Event 1 shows an
available storage unit
S; being filled with a

Event 2, similarly for
S, and b

Event 3 shows an available
processor P beginning
to perform X

Event 4 shows storage unit
S; being released for
reassignment

Evert 5, similarly for §S)

Event 6 shows the commitment
of a storage unit S3 to thre
s holding of the

| 4 output C

6

Event 7 shows the processor
P releaced for re-
assignment

»g—

Now consider a facility in which there are N events, each
requiring an identical reallocatable unit (e.g. N add

events each requiring a given type and size of adder, or

N storage events each requiring a given type and size of
storage unit. One can examine the consequences of estab-
lishing a définite'cyclic;schedulejpfdallocationgfor units.

of éhé required type;'

E2.

/ . b4 I
1 4,2
\ / b\
\/ e
3 4

Figure E2 proposes an example where there are four such
events, 1,2,3 and 4 and a particular cyclic schedule
(one out of the six possible) for three identical resource

units. Various questions now arise.

E3; .1 Is the new marked graph still live? .If not, there
may be some other way of distributing the three
units on the circuit so as to yield a live graph.
Or, one may discover four units are necessary.

.2 The token distribution on the circuii shown in
E2 is not safe. It may be desired to find a safe
distribution because it would remove the need for
arbitration.

.3 What is the largest number of units which could

| .. be use@ on the circuit to advantage -- mgan;nq
that no larger number would iﬁcreasé“the effecti;e

throughput rate and no smaller number would permit

o from——
e J

58.

as high a one.
Theorems are proved in Chapter V which provide algorithmic
techniques for answering such questions.

While, with marked graphs one can explore the effect
of various fixed cyclic'schedules of allocation, one cannot
repréesent and analyze the effect of resource poois. The
next figure shows how, using a place connected to more
transitions than is allowed in a marked graph, one can

replace the circuit in E2 by a pool.

E4.

The effect of this arrangement is to insure that there will
never be more than three concurrent firings among the
transitions 1,2,3, and 4 . '

There are other limitations on the descriptive power
of marked graph models. Roughly speaking, one cannot model

the effects of decisions with ‘data depeddent'éutcome{ noi

can one conveniently model facilities in which quh
successive output requires the multiple traverse of

various internal production cycles, some only a few times
and others many times. These descriptive abilities also
require the use of a moré general class of Petri nets which

we are not yet in a position to discuss systematically.

Ry e |

o en 2 s o rmetee O o bt @

C-—\

CHAPTER IV.

PREVIEW OF MARKED GRAPHS

- e e G o —

0 v L .- PN LY § .
.
R U SO URR) o
- . .
il £
=
G =]
,'r__= fg“. T ¥y v
SRR B A Reis | AR b,

PREVIEW OF MARKED GRAPHS

The last chapter meant to give the reader some feel for
how to apply meaning to marked graphs. This chapter means

to give the reader some feel for how to apply mathematics to

marPed graphg. The results described and illustfated here
are a significant sampling of the material in Chapter V
where notations, proofs and algorithms are presented.for
the first time.
Many theorems in Chapter V concr.rn the existence of !
certain markings or firing seguences in marked graphs under
specified conditions. The proofs of these theorems provide

efficient algorithms for determining whether or not the con-

ditions hold, and constructing the marking on firing sequence

if they do.

Liveness

The most inportant question about a production facility
is: Will it operate? Will it function properly or are
deadlocks present which may cause parts of it to halt?

In a marked graph model of a production facility, we
define a vertex to be live if it may fire at some time. A
veftex which is not live is said to be dead."

-Our first theorem gives a necessary and sufficient

condition for a vertex to be live.

Theorem 1: A vertex is llve if and only if it is not contained

in a blank cxrcuit or a blank path from a blank cxrcult. (A

set of arcs in a marked graph is said to be blank if it

=

1 "o R e

— 2

e T G SOOBWYL e

61.
contains no tokens.)
Example:
a,-‘rffa‘\\\ B”‘g”_\i;}__ﬁ_____1>.;r”_“\\=f
_/7}3 ' C~—— d € \6/4

In this marked graph, the vertices a , b, and £ are
live. The vgrtices c and d are contained in a blank
circuit and the vertex e is contained in a blank path
from this circuit.

Even if a vertex is live it may only be able to fire
a limited number of times. Vertex f above, for examp;e,
can fire only once.

Our next theoéem gives a criferion for determining
how many times a vertex v can fire étarting from a given

marking M . We call this number DM(V) .

Theorem 2: In a marked graph witn marking M , DM(V) is
equal to the smallest number of tokens on a path from a

dead vertex to v . (See example, Chapter V, page 91).

This theorem may be used to analyze the behavior of

a production facility if some necessary commodity is cut

-

off. We can represent this cut-off by placing a blank

.g8elf loop on the vertex which represents the event which

produces the commodity.

T

WA

(2

Supply vertex \\tl Cut-off
for of

commodlty commodity . .

‘Theorem 2 then tells us how far the procedure will go

without further supply of this item. It follows from

Theorem 2 that if a marked graph contains no dead
vertices every vertex may fire an unlimited number of .
times.

Such a marked graph is said to be live.

Achievability Tests in Live Graphs

In a live graph we may wish to know if a certain
marking is achievable from a given marking M . Suppose

we have a certain test marking T and we wish to know if

P P

M leads to a marking M' which contains T . Our next
theorem provides a test to determine whether or not this is .

possible.

Theorem 3: In a live graph with marking M , let T be
a test marking. M leads to a marking M' which contains
T if and only if, for every circuit C , M places at

least as many tokens on C as T placeé on C .

The proof of this theorem provide; an algorithm which,

if the circuit condition is satisfied, constructs a firing

B R A

sequence which results in a mérkind M' . which contains T .

e i

63.

Example:

TN e

Can the vertices x and y fire concurrently? To find out,

we use a test marking which makes both vertices firable.

f@"\/\/@\f\
?‘ \—/\e/‘d\—/d\/q

The marking T places at most one token on each circuit

(Cl,Cz, C; and C4). The marking M places one token on
each circuit. Thus M leads to a marking M' which

contains T :

e A/—\A/‘\A/—\A/\
X\e'/vw _e/q\el/qv
$ fire v

TN N O
\e/"\e/ Yo >—"v

é fire =z

/“\ TN N
\e \G/VU\G/VV

& fire v and vy

/\ A/e\\ A/-\ A/G\ S A doae

'x‘\~<9’A7 S y‘\\{}/A7 . OV

fire 2z and w

M': ~ Ax’f}‘s\.,g”“\\.‘y”{D”\\.zﬁzﬂ~\\\,

agd

64.

The next theorem allows us to determine whether one

+..:wivking leads to another.

Theorem 4: In a live graph with marking M , M leads. to
M' if and only if M and M' place the same number of
-tol'ens on every circuit.

It may also be shown that:

Theorem 5: If' M is live and M licads to M' then M!

leads to M .
Chapter V, Section E contains theorems similar to

Theorems 3 and 4 which do not assume either liveness or

strong connectivity.

Maxima and Minima

Imagine a counter attached to each vertex in a marked
graph which counts the number of times the vertex fires.
We may wish to determine what the maximal or minimal value
is of some function of these counter values. One inter-
pretation of the counter values is that each vertex represents
an event which produces a profit or loss to a business. 1In
this case we may wish to determine what is the minimum
amount of capital required to prevent the businees from
going into debt. (See example, Chapter V, Section G, page 127.)
If the counter function is linear we have theorems which
provide algorlthms for determlnlng what the optlmal value

- of the functlon 1s and constructlng an optlmal sequence of

" vertex firings.

—_ ey ey T e oy YT e

65.

One interesting linear function of these counler
values is the function a;Xx) + agXgy...t a x, where the
Xy is the value of the counter on the vertex Vi o. The
coefficient a; is equal to the number of output arcs of

\f minus the number of input arcs of vy -

NN NS
72 N BN

Clearly a; is the net increase in marking size produced

Example:

by a firing of Vo This marking size function gives us
a special case of the previously mentioned theorem. Thus
we have a criterion for determining the number of tokens in

"largest" marking M' to which a given marking M leads.

Theorem 6: Let g be a marked graph with marking M .,
The maximum number of tokens in a marking which M leads
to is equal to the minimal number of tokens placed by M

on a circuit which contains all the arcs of g .

Example:
The largest marking which M 1leads to has size 4.

A minimum CerULt whlch contalns every arc is

W0t ol o, . R A O

C = (abcdccafgecafhl) . C paqsos through thc arc c

-
.

o e ——— — — > @ o

)

. "!

three tiwes and once through the arc i . Thus C has

4 tokens.

i
:‘)

|

|

|
b |
i o 4

L i
ll
Here is a sequence of firings which brings us to the
largest marking: i
i
]
after firiﬁg a
|
a™_ B,Q
a fire b
L . l
\

) - e

P—

e mecn tmin 8 e
" -

67.

fire c .
This is a largest maiking.
Now we ~eturn to the original

marking.

fire ¢ and e ,

-r

—te

:

i

would be required to perform a given cyclic task represented
as a marked graph if no new timing restrictions are to result

from the allocation of processors.

In the preceding example, one possible allocation is:

processor : cyclic schedule
number of tasks

1 a,b,<

2 a,e,f

3 a,b,c,e,f

4 a,b,c,d

[o s

The route of processor 3 is shown in the.grapﬁ.

Safetz

An arc in a marked graph is said to be safe if the maximum
number of tokens which may ever appear ‘on that arc is 1.7 ' e

Since a safe arc is either empty or has 1 token, it may be used

.

e

 S—

Section F. '
* ' : Aﬁi//f~Cf“~\\\

69.

to represent a condition which either holds or does not

hold, o a proposition which is either true or false.

" Theorem: An arc in a live marked graph is safe if and only

if it is contained in a circuit with 1 token.

Theorem 7: Every'strongly connected graph has a live

marking in which every arc is safe.

Example: | A(/;ﬂd -\\\\\\

marked graph:

A live and safe ¥>\\\;\“€y////)7 %\\

For more examples ®

gsee Chapter V,

~_ 7

Throughput Rate

If each vertex in the graph is assigned a time
duration, we may wish to determine what is the maximum

average rate of firings per unit time for some vertex.

Theorem 8: The maximum average firing rate ig the same
for all vertices and is equal to the minimum ratio of the
number of tokens on a simple circuit to the sum of the

time delays .of .the vertices on the circuit.« v

-~

e P

Lrample:
”ﬂdn‘”‘%b Each vertex in this graph is
a \\ assigned a duration of 1..
s) Each vertex can undergo one:
] // < firing every three time units.
1 N - //d' 1

e

b

'The circuit (a,b,c) has 1 token and 3 time units, giving
a raﬁio of %.. We may double this ratio by adding an extra
token to the graph. (For more examples see Chapter V,
Section H.) Here are three mérked graph implementations

of the task represented by the production scheme:

a.
bV
eV
a ¢ a 'V\ a’
~
Q
h
p V¥ b b
{ v V.
c - o S 0 . .icr ..
1.) | 2.) : 3.)

Ve

71.

If each vertex firing requires 1 time unit, the average

-

firing rates are:

4 L 1 2
l.) 2 20) 3 3.) 3 .'

|

MARKED GRAPHS MATHEMATICS

A. " What is a Marked Graph?

A marked graph is a directed graph'with a set of

designated arcs. Arcs are designated by blacing tokens

on them.
undesignated: . Do .
e'g' s
designated: . () g
Designated arcs may contain several tokens:g-—() (ED e

One may think pf the marking of a graph as the integer
valued function which specifies, for each arc, the ﬂumber
of tokens placed upon it. (If no arc has more than one
token, then this function is just the characteristic

i function* of the set of designated arcs.)

Example:
A Marked Graph:

wha e e e e ae

X €S : => F(x) =1
'J _ X £ S : =p F(x) =0

73.

Formally we will define a marked graph g thus:

y mv« é <<V,I\,T,r:"> 1M>

where 1. V is an at most denumerably infinite
| set of vertices. |
2, A is an at most denumerablf infinite"
set of arcs.
3. 4 and ; are functions, from A to V.

4+ (a) is called the input vertex of a and

%(a) is called the output vertex of a.
¢

Also if a € j- v) then a is called an

output arc of v ; if a € S , then a

is an input arc of v .
"A vertex may have only a finite number of
- input and output arcs.

4, M is a function from A to the non-negative

- ' - integers. M is called the marking of s
[‘ 5. . <&,A,t,%> is the graph of the marked graph.
'[‘ : We will notationally treat 4 and X as relations, thus:

t(a,x) A 4(a) = x ; t(a,~) A 4(a) and 4(-,x) A {a:f(a) = x} .

B. The Firing Operation

The firing operation is a type of transformation whiclh takes
- one marking of a graph into another: Any vertex all of whose

sped incoming arcs are marked may be fired by removing one token

output arcsv

from all it..s‘iﬂm,lt_érqs,?n@ adding, one. token to all its.:

E.g. Vertex v may be fired:
\ /
Q_f
(1) before S \4
firing ///
/
I 4 4

74,

V4 |

q' v (2) after

/ firing
4

We say that a marking M leads to a marking M' , symbolically

M[-)M'

firings which transforms

M , step-wise into M' .

, 1f there exists a finite non-empty saquence of

The

definition of vertex firing makes clear that it is a re-

versible operation which we will call backward firing the

vertex. We will write M[=)M'

The notation ‘M[xl,xz,x3...xﬁ)M'

if M[-OM'

or M! M.

means that M can be

transformed into M' by the sequence of vertex firings

x1’x2'X3-.¢xn L]
firings we will also write M[o)

M'|M[o)M' , and [0)M'

For a given finite sequence

¢ , of vertex

to mean the marking

to mean the M|M[o)M' .

Given a marked éraph <§,@>'we can define the strong reach

> > °
of M denoted by M thus: M A {M'|M[-)M'} ;

and the weak

D =D
reach of M denoted by M thus M A {M'[M[=)M"'} .

C. " Paths and Tracks

A path is a sequence of arcs a;,ay,a3...a, and a

sequence of vertices X0 rXq 1Xge oo Xy such that the arc ai

connects the vertices X531 and x

paths by the following notations:

p U

We will denote .

L U A e s

75.

. -

l,al,az,aB...an

or. on,xl,xz...x which could designate any path on which
n the vertices appear in that order
or Plo where o0 is a sequence of elements (arcs
or vertices) and P is the name of the
paths

A forwards directed path P is one in which each arc a;

connects

X4 1 to x, -- i.e. j(ai,xi_l) and +(ay,x;) -- and can
T » e . =

be denoted by Plxg,%;sX,...x ~ oOF PI,-al,az...an .

A backwards directed path is one in which each arc ay

connects Xy to X5 4 and can be denoted by ‘bﬁxo,xl...x

1 n

-
or Pl;al,az...an

--'"h-
Given Plo , we say:
If o has an initial element x , then x is the

initial element of P ;

If o has a terminal element y , then y 1is the

" terminal element of P ;

If x and y exist, and x#y , then x and vy

are end points of P .

To say P begins at x or P ends at _y is to imply

that x and y are end points.

Any element of P which is not initial or terminal

" te

is cvalled an inner element of P .

If P has no endpoints, it is called a track.

! VR D%, ,‘,‘9“‘ :
T ,-: :

76.

If P has no terminal endpoint, it is called a

" forward track. ' i

If P has no initial endpoint, it is called a

" backward track.

If the initial and terminal elements of P are the

same, P is called a circuit. L

Examples: |

o

LT e e @— - a path ’
Ve —p —p — —f s e e a track

—— initial vertex of P : x; |

P“xlxle terminal vertex of P : x| ‘

an inner vertex of P : x !

: néne

///—-\\' endpoints of P
XI ._/.Xz P i i it
is a circui

P is a track

(P is also a forward track i
and a backward track)

> o~ e e s » a forward track
- & &6 —fr ——p= ——ftne a backward track
I s a track
PLxlxlexle P does not begin at x,
et —pr —egn —psY This path begins at x and

~ends at y .
Not a forward track, not a
backward track, not a track.

P -

f’ .. 77.

[D. Lengths of Palths and Scquences

Given a structure S with elements e and a property

P we definc:

[s|P[A The number of clements of § which have property P

L]

Cxamples:
Assume ‘;H2;;>£hi i <n is a directed path in
= <KV,A,T,%>,M>
. the éf& iéﬁqfh of P , is the

Then [p|a] jth
number of arcs in P .

M| the token length of P , is the
number of tokens on P : more
exactly:

‘ n
IP[M| = I M(a;)
i=1
If xeV
then e] x| the number of times that the
verxtex X appears as a vertex
of the path.
et (=,x)] the number of arcs of P which

are output arcs of x .
We write {P} to mecan the subgraph covered by the path P .

{r} M| " the_reduced token length of P
is the number of tokens on the
subgraph which P covers.
More exactly:

[{P}|M] = M(a) .
' ac{p

[

78.

J_ a@ The graph e,
X, ¢ e X —’/\- ‘
) X,

The path P

P |A]l =6
P | M]| = s
HE UL
1P| 1) || =2

17} | M| =4
RUARISERER

The same notations can be used for arbitrary sequences,
whether they are paths or not. For example, if o is
a scquence of vertices (x3,x4,xl,x3,x2> then
" o |) I = 2. Definc..
Isle@y 2y pqu b |4 £CIsIpyl, stesli L5 oyl oy y e
Example:
IPlx-x5l = [Blxyll = [elxsll =2 - 1 =1

.
| P

I

ye

79.

Theoxrem D1

Let M[x)M' and let P be a forward directed path. Then

[[|M]| = ||P[M' || if x is not an endpoint of P. If P
begins at x then |[P|M' | = || P|M| + 1 ; if P ends at

x then |lP[M' | =] PpM]|-1.
Proof |
+ Suppose x is not an endpoint of P. Then
Il 2|4 F=J2|4t-x [=]2]|x]. only arcs
which are inputs or outputs of x have a different value in
M' than in M: each input arc is decreased by 1, each out-
put arc increased by 1. It follows that, if k = || P | x || ,

then the || P | M' | =] P | M| - k + k.

+ Suppose P ends at x. Then, by what was just shown

et =0t f+1=) p|x]=x.
Therefore || P | M' || =P | M |-k + (k-1) = ||P | M |.-121.
Similarly if P begins at x . Q.E.D.

Immediate consequences:

D2. Assume M[x)M' ; if P is a track then | P | M' | = || P | M || ;
if P is a forward track with a beginning at x then
o | M]| =] | M|+ 1; if P is a backward track beginning at x
beginning then || P | M' | = [P | M || - 1. '
D3. Assume that M[o)M' and that, in o; the vertices x and y were
fired an equal number of times. Then for all paths © from
x toy, | 2| M ”.= | p | M(Il . f%aus the pair of markings,

' M and M' determine ‘a partition of the 'Vértices of the ‘graph '

80.

into equivalcnce classes via the relation: x and y are
fired an equal number of times in ¢ . We will call this

the vertex partition of (M,M') .

D4. Given M[oDM' and that, for vertices x and y,[lo| x| = |lo [¥y |l = n.
Then, for all paths P fromx toy, [P | M' | =P | M| + n .
In particuiar, if, for all arcs a || o | t(a,-)]| and
o |¥(a,-)|| are known then M'(a) - M(a) is known. Now
letting ¥ be a variable which ranges over all vertices of the
graph we may think of o as defining a function | o | ¢ |,
mapping each vertex x to the integer which specifies the
number of times x was fired in ¢ . We have shown that the
function || 0 | z | exactly specifics M', if M was given.
Thus, if M{o;>M; and M[o)M, and oyl ol = 1o,z | then
My = My .

Example:

M [6) M

a b
;' 0 may be any of the
following sequences
c.
’/////// c, e, b, 4, a
dA e c, e, 4, a, b

C, e’ d’ b’ a

Y C, d’ a’ e’ b
Marking M

c, d, e, b, a

c,.d} e, a, b

The following is a natural generalization of Dl.
Let P Dbe the undireccted path xo,ao,xl,al,xz,az...xn
n-1
Define |[|P|M | =] &.M(a,)
i=o * %
where 6., =1 1if 4(a.,x.)
i IR S
and Gi = -1 if +(ai,xi)
Example
Gi = 1 -1 1 1 -1
. B ¢ - o & 1o e — 1
X0 % *2 *3 4 %5
Theorem D5
Let M[x)M' and let P be a path. Then | P[M | = || p|M* |
if x 1is not an endpoint of P . If P begins at x
{
then |[P|M'] = |lP[M || +1 ; if P ends at x then

Iefm [=lemf-1.

Proof

Suppose Xx 1is not an end point of P . If it is not

a vertex of f at all then neither do any of its input
or output arcs lie on P , and the firing of x cannot
change the token length of P . Now suppose X occurs
one or more times on the path P.. We can assign

to each occurrence of x in P two arcs of P :

If x = Xs 0<i<n then assign the arc pair '<ai'ai+l>

,_.__
.

if x=x = X0 then assign the arc pair '<éofan> .

For the input and output arcs a of x , define

"
RS

- j(a) =+ 1 if a is ah input of ' x “énd'”j(ar"="Ffl"'

"if a is an output of x .. Then, if <{a,a'd is an

=

arc pair of x on the path P

[

j(a) = éd(a) and j(a'). = -8(a) . Thus these two arcs
contribute ¢ = j(a)M(a) - j(a")M(a'). to |P|M] .
By firing the vertex, the number of tokens on an input
or output axc a of x is changed by -j(a) . There-
fore the arc pair (a,a') , after firing, contributes
c' = j(a)[M(a)-j(a)] - j(a')[M(a')-j(a')]. to Jp|M'|
but ¢ = j(a)M(a) - j(a)2 - j(a")M(a') + j(a")?

¢ =c+ j(an)? - ‘j(a)z =c.
If P ends at x then, in addition to a set of arc
pairs wvhich P might contain because of other occurrences
of x on P, the firing of x also affects a, (but
not a;). The contribution of a, to |P|M] is
c = j(a,)M(a,) ; after firing the contribution is
c' = j(ap) [M(a,) -'j(an)] = c¢c~- 1. Hence
jpiM'] = |p|M] - 1 ; similarly, if P begins with
X .

Restrictions

Let G be a graph with marking M . Let G' be
any shbgraph cf G.
Definition -

M|G' A The restriction of the function M to_ G'

M|G' A The restriction of the weak rcach of M to G'

This is the class of markings M; such ‘that
o . -
there exists M, such that M, e M and

. Memmlel
.,—D . . o)
M|G' A The weak reach of M|G' .

s N
In general M|G' # M|G' .

P T R ST s e e

)

83.
{ Example:
| X X)E
(G,M) : a ', Ml : Q « (G M)
Y Yy : Y
Vertex x is nofl;tréble in G' but not in G .

i T et

) . . . =i
Thus the marking M; 4is in M|G' but not in M|G' .

Theorem D6

In a marked graph G with marking M where G'e G,

ﬁ]G's; M[G' .

Proof: .

._.b‘ el
We will show that (Ml eEM }=D{M1|G' e M|G') .
Let Mj eM. If M; =M then MllG' = M|G' ¢ M|G' .
Now assume M, # M + In that case, M[->M; . We
will now prive that for any vertex x ,

—db-

« _ (M[x)Ml¥=4>(M1|G' € MIGW
Suppose x ¢ G' . If x is firable in M then all
its inpdf arcs must contain tokens. Thus all its
input arcs in G' must contain tokens. Thus x is
firable in M|G' . and M|G'([x)> exists. Clearly |
>

M[x>|G' = M|G'[x> . Thus M;|G' e M|G" . Now

assume x ¢ G' then the token content of every arc in

| “ . 'G' . is unchanged by the firing of x . Thus M;|G' = M|G'
oo R T T T S T S S T 1
and M; € M[G' .

Now assume ¢ is any sequence such that Ml[o?

exists. Let g = 51,52,53...5 and

n
rs %
MIsp M) [sdMy. .. [spd My, . Assume M;|6' e M|G' . Then
: ey o e
- M. |G!
M;[s; ,>M;,, and by the above argument M;,) € MllG X
ST P FErn e e
However since M,;|G' ¢ M|G' then M;|G'& M|G' thus
T e ’ wo= e
Mj+l € M|G' . By induction MnIG' e M|G' .

Q'E'DO
E. Liveness
Definition:

El. A vertex x in vy = {g,M> is live if thzre

exists a firing sequence o¢ which contains x . More

exactly: 3o[M[o)> exists and |c|xf > 1.

E2. A marked graph is live if all of its vertices are

live.

In this section we will discués criteria by which one can
determine whether a vertex or a graph is live. We will algo
discuss the connection between liveness as a "static" fact
about a givcn-marked graph 'wwb , and the behavior of 4*QS

N,

when it is transformed by firing sequences.

" Lemma E3.
Let g be a directed graph in which every vertex has,
at most,. a finite number of input arcs. Assume that g

containg a vertex Xq which can be reached from an
. infinite number of vertices y in g -- i.e. '

vy) (P) "

T e 3

85.

e o ———
-<

path I'[x,...

" Preliminary Definition.

For a vertex x , define thce backward rcach of x

< B SU—
denoted x as {y:(2P)(Plx...y)} .

Proof

"We shall !'mductively construct an infinite sequence of

vertices and arcs X;,80,X;s2;,Xys8,0 0. |

o <3 -

.1 (Vai: xi ai Xi41

.2 ?; is infinite

-G
Note first that, by the hypothesis of the theorem Xq is

infinite. Now examine the sét of all vertices zi from which

X, can be reached by a path with a single arc. There must

be such vertices, or the backward reach of x cannot be

‘] 0
‘infinite. At least one of these vertices, say z, o has
infinite backward reach. This is because §; ='{zi}ipggz
1

and the union of a finite number of finite sets is at most

finite , contradicting the assumption that the backward

(] [} . [. 4 L]
reach of x0 is infinite. Pick an arc Xq a, zK

and let Xy be z . Now given that x .-.X has

K 0'% 1
been constructed we can construct a, and Xn+1 by the

,xl,a

same argument.

Theorem E4

A vertex x in o = <g,M> is live if and only if for all

AP e

infinite paths Plx.... , [PIM[| > 1.

Proof: -
+ Suppose there exists a Plx.... | [p|M] =0 . By

D1l we know that for arbitrary firing seq .ences M[o)M'
IP|M'| = 0 . 1In particular no firing sequence results

in a marking which places one or more tokens on the first
arc of P . But that arc is an input of x . There-
fore M does not lead to a marking in which x 1is

firable.
-

« Suppose that, for all infinite paths Plx.... ,
feimM]| > 1 . Let B, be the subgraphof g obtained by
taking the union of all backward directed paths P from
x | Jp|mM]l = 0 . If there are more, let By consist |
of the vertex x alone. B contains at most a fipitg

number of vertices. If it contained an infinite number

then, by lemma E3, B, would contain an infinite path
B ,
P'[x with [P'|M|| = 0 , contradicting the

hypothesis.

Next observe that B, must contain at least one

firable vertex. First, if B, consists of the vertex

x alone, then by construction,. .x. must be.firable.., 2v....
Second, note that B, must be circuit f?ee, for otﬁér4

-
wise an infinite path P'|x can be constructed

87;

in Bx . Since Bx is finite and circuit free it
. -
must contain finite paths of maximal length Pﬂx eee Y o

But by construction, y must be firable, the blank
path P can be extended by adding an empty input arc

of y.

Le; y be a firable vertex of Bx r Y # X . Assume
M[yd' and define B; relative to M' just as B,
was defined relative to M . We shall show that Bé
is properly contained in Bx .

(1) y e B, andy ¢ B' because by theorem Dl the
X

e e

token length of every path from y to x must have

. increased by 1 .

(2) If zeB; and z ¢ B, then the token length of
some path from 2z to x must have decreased to 0 as

a result of firing vertex y . 'By.bl this shows that

z=.y. o ot

Thus we have shown that, starting with M , one can
construct a finite firing sequence which terminates

with the firing of vertex x . Q.E.D.

- ey

Example:

The vertices w,x,y, and z are dead and contained
: = .- ' -< P . Yoea .t R ° 50 o
| L - ~in’the blank backwards track jw,¥,z,%X,¥.Z,Xc.. .

’

U : All other vertices are live.

¥ - .
F oy ' . " -
T A 8 - ¥

ST

/_‘—y
&

Theorem ES

A vertex firing in a marked gra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>